Detection of Nucleic Acids with Graphene Nanopores : Ab Ini - tio

نویسندگان

  • TAMMIE NELSON
  • BO ZHANG
  • OLEG PREZHDO
  • Bradley F. Habenicht
  • Tammie Nelson
چکیده

Submitted for the MAR10 Meeting of The American Physical Society Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device1 TAMMIE NELSON, BO ZHANG, OLEG PREZHDO, University of Washington — We report an ab initio study of the interaction of two nucleobases, cytosine and adenine, with a novel graphene nanopore device for detecting the base sequence of a single-stranded nucleic acid (ssDNA or RNA). The nucleobases were inserted into a pore in a graphene nanoribbon, and the electrical current and conductance spectra were calculated as functions of voltage applied across the nanoribbon. The conductance spectra and charge densities were analyzed in the presence of each nucleobase in the graphene nanopore. The results indicate that, due to significant differences in the conductance spectra, the proposed device has adequate sensitivity to discriminate between different nucleotides. Moreover, we show that the nucleotide conductance spectra is not affected by its orientation inside the graphene nanopore. The proposed technique may be extremely useful for real applications in developing ultrafast, low cost DNA sequencing methods. 1Authors are grateful to Dr. Bradley F. Habenicht for discussion. Research was supported by grants from NSF and ACS. Tammie Nelson University of Washington Date submitted: 17 Nov 2009 Electronic form version 1.4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic structures of porous nanocarbons

We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores...

متن کامل

Geometric Effects on Nanopore Creation in Graphene and on the Impact-withstanding Efficiency of Graphene Nanosheets

Abstract Single- and multilayer graphene sheets (MLGSs) are projectile-resisting materials that can be bombarded by nanoparticles to produce graphene sheets of various sizes and distributions of nanopores. These sheets are used in a variety of applications, including DNA sequencing, water desalination, and phase separation. Here, the impact-withstanding efficiency of graphene nanosheets and the...

متن کامل

Studies of RNA Sequence and Structure Using Nanopores.

Nanopores are powerful single-molecule sensors with nanometer scale dimensions suitable for detection, quantification, and characterization of nucleic acids and proteins. Beyond sequencing applications, both biological and solid-state nanopores hold great promise as tools for studying the biophysical properties of RNA. In this review, we highlight selected landmark nanopore studies with regards...

متن کامل

Potentiometric sensing of nucleic acids using chemically modified nanopores.

Unlike the overwhelming majority of nanopore sensors that are based on the measurement of a transpore ionic current, here we introduce a potentiometric sensing scheme and demonstrate its application for the selective detection of nucleic acids. The sensing concept uses the charge inversion that occurs in the sensing zone of a nanopore upon binding of negatively charged microRNA strands to posit...

متن کامل

tRNA Modification Detection Using Graphene Nanopores: A Simulation Study

There are over 100 enzyme-catalyzed modifications on transfer RNA (tRNA) molecules. The levels and identity of wobble uridine (U) modifications are affected by environmental conditions and diseased states, making wobble U detection a potential biomarker for exposures and pathological conditions. The current detection of RNA modifications requires working with nucleosides in bulk samples. Nanopo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012